Veinot receives funding to study neighborhood health disparities

Veinot receives funding to study neighborhood health disparities
Tiffany Veinot, associate professor in the Schools of Information and Public Health, has received grants from the Social Sciences Annual Institute (SSAI), a joint initiative of the U-M Office of Research and Rackham Graduate School, and from the MCubed Diamond Initiative, to fund her project, “A ‘Big Data’ Approach to Understanding Neighborhood ...
Tiffany Veinot, associate professor in the Schools of Information and Public Health, has received grants from the Social Sciences Annual Institute (SSAI), a joint initiative of the U-M Office of Research and Rackham Graduate School, and from the MCubed Diamond Initiative, to fund her project, “A ‘Big Data’ Approach to Understanding Neighborhood Effects in Chronic Illness Disparities.” 

In the United States, race and ethnicity, place of residence, and socioeconomic status—which includes income, education, and employment—predict health and illness. Independent, negative health effects are more likely to afflict those who live in areas where a large proportion of residents are socioeconomically disadvantaged. 

Initiatives to reduce neighborhood-based health disparities are often hindered by gaps in the country’s population health information infrastructure. These gaps include a lack of accepted indicators of community health and data that are not fully exploited or effectively linked.

Veinot’s project will address challenges associated with gathering and analyzing large, diverse population health data sets by leveraging emerging big data sources such as social media sites, GPS-based data from personal devices, and citizen-created maps.

The study will also include input from organizations that can provide existing data sources, like crime and EMS data, that are routinely collected but not often used for health research. The data will be collected from the 10-county Metropolitan Detroit Combined Statistical Area, which includes the counties of Lapeer, Livingston, Macomb, Oakland, St. Clair, Wayne, Genesee, Monroe, Washtenaw, and Lenawee. 

With the data, Veinot and her team of co-investigators will analyze ecological effects of neighborhoods, and seek to find relationships among risk factors such as housing conditions, safety, access to health-enhancing services, and other categories commonly found to contribute to negative health outcomes. 

The project will also assess the feasibility of using GPS-based data collection techniques for measuring chronic illness management activities. Researchers will collect information from participants equipped with a smartphone and GPS tracking device in order to identify places where a person spends a great deal of time. 

The data collected form GPS devices will then be used to create measures of personal exposure to neighborhood risk factors. This portion of the study could provide vital first steps toward more precise modeling of the relationship between neighborhood characteristics and individual chronic illness management behavior. 

Veinot is the principal investigator on this project and will be working with an interdisciplinary team of faculty members from schools across U-M:

Veronica Berrocal, assistant professor in the School of Public Health Biostatistics Department

Phillipa Clarke, research affiliate in the Population Studies Center and research assistant professor in the Survey Research Center

Robert Goodspeed, assistant professor of urban planning in the Taubman College of Architecture and Urban Planning 

Daniel Romero, assistant professor and Presidential Research Fellow in the School of Information

The project also involved collaborations with the non-profit organization, Data-Driven Detroit, and the citizen-driven Detroit Food Map Initiative

SSAI was established by the U-M Office of Research and the Rackham School of Graduate Studies to grant initial support for unique and innovative projects that cut across traditional disciplinary boundaries and have potential for wide-ranging impact. SSAI selects up to two projects to provide funding up to $50,000 for new scholarly activities, bringing visitors to campus, organizing symposiums, or securing assistance in developing a major proposal. 

MCubed Diamond is funded by The Alfred P. Sloan Foundation and the Gordon and Betty Moore Foundation as part of the Science of Data Science (SODS) project.  The goal of SODS is to advance the state of data science and build institutional capacity to support it.

Source: healthinformatics.umich.edu