Healthcare AI: Game Changers for Medical Decision-Making and Remote Patient Monitoring

Advancements in healthcare AI have resulted in the creation of several game changers for remote patient monitoring and medical decision-making, including digital technology that provides valuable patient data in the absence of clinical visits and puts a wealth of knowledge at physicians’ fingertips. What may have sounded like science fiction years...
Healthcare Ai offers game-changing opportunity for remote patient monitoring and medical decision-making.

Advancements in healthcare AI have resulted in the creation of several game changers for remote patient monitoring and medical decision-making, including digital technology that provides valuable patient data in the absence of clinical visits and puts a wealth of knowledge at physicians’ fingertips.

What may have sounded like science fiction years ago is a reality today. From pills that provide feedback about medication adherence or help doctors diagnose patient symptoms, to machine learning applications for data sharing, predictive modeling, and medical decision-making, advancements in healthcare AI deliver a constant source of innovation and excitement.

In this article, we highlight just a few that are, or have the promise of becoming, game changers.

Smart Pills That Monitor Medication Adherence

In November 2017, the U.S. Food and Drug Administration (FDA) approved the first pill with a sensor that digitally tracks if patients have ingested their medication.

Called Abilify MyCite®, this digital medicine system includes an aripiprazole tablet embedded with a digital sensor that is activated when it comes into contact with stomach fluid. The information is communicated to a wearable patch and shared with a corresponding smartphone app. Patients can review the information with their doctors or, with the patient’s permission, the data can be transmitted to a secure web-based portal where the patient can select which members of the care team and family can view their information.

Technology like this could help physicians track patient compliance with their dosage instructions, such as time and amount of the drug taken, and may encourage prescription adherence.

Ingestible Trackers That Support Diagnoses

Ingestibles are also being designed and tested that can take the place of invasive probes to help doctors diagnosis certain conditions.

In January 2018, researchers from RMIT University announced the completion of the first human trials of a gas-sensing ingestible capsule that could be used to help detect disorders of the gut - from improper absorption of nutrients, to colon cancer.

Healthcare AI could mean a different connection between doctors and patients in the future.

As reported by RMIT University, the capsule (the size of a vitamin pill) detects and measures gut gases in real time. The data can then be sent to a smartphone. The capsule could serve as a less invasive option for getting to the bottom of patient symptoms so the proper treatment can begin sooner.

Machine Learning for Diagnosis and Decision-Making

Machine learning is a subset of artificial intelligence, and deep learning is a subset of machine learning. For the purposes of this article, we will just use the phrase machine learning, but if you’ve ever wanted a clearer understanding of AI and the difference between machine learning and deep learning, this article and this article should help.

Machine learning has far-reaching applications in healthcare, including enhancing diagnostic imaging, aiding physicians in diagnosing illnesses, extracting data that can help pinpoint the most appropriate course of treatment, and more.

For example, computers that can learn patterns and signs of disease can help physicians:

Additionally, with amazing processing speed and memory capacity, these computers can integrate and analyze vast amounts of healthcare data quickly and deliver the most relevant results to support healthcare professionals in medical decision-making.

What Makes Machine Learning Such a Game Changer in Healthcare?

Just imagine how AI could be used to enhance the collection, usability, and dissemination of electronic healthcare data, as well as the wealth of knowledge doctors and other healthcare thought leaders amass over their years of experience.

Through machine learning, computers could cull decades of historical data from hundreds of thousands of patients with a particular illness, as well as their corresponding treatments and results. Doctors could then use that data to help pinpoint the course of action that will most likely yield the intended outcome for someone facing that illness.

The benefits of healthcare Ai are being explored by providers and technology developers alike.

Machine learning could also be used to streamline the creation of clinical notes and apply filters that make them more accessible and usable. And it could be used to merge multiple sources of healthcare data - electronic medical records, clinical trials, genomic studies, pharmaceutical research, academic literature, etc. - to aid in medical decision-making.

While physicians couldn’t comb through the virtual mountains of data that exist on their own, a computer trained to aggregate, analyze, and deliver relevant data could, in a short time, put the experience of thousands of healthcare professionals worldwide at the physician’s fingertips to assist in the case… a “virtual collaboration” of sorts.

AI That Supports Remote Patient Monitoring and Elder Care

Machine learning also plays an important role in digital home monitoring systems and intelligent care management devices. These tools have bolstered the growing trend toward providing patient care at home or on the go. They have also provided many individuals with the opportunity to stay independent for as long as possible and support aging in place. Some examples of these devices include:

  • Smart pillboxes with sensors connected to smartphone apps to support the monitoring and tracking of medication adherence
  • Bluetooth-enabled systems that track and transmit blood pressure and glucose level readings, allowing for remote vital signs monitoring
  • Systems that combine in-home sensors, smart wearables, and predictive analytics to track activity levels, monitor changes in behavior, detect falls, locate someone who might wander from safety, and more
  • Diagnostic wearables like “smart bras” and monitors like mobile EKGs that allow doctors to monitor the condition of patients with breast cancer and heart disease without the need for clinic visits

These and other digital home monitoring and care management devices rely on machine learning to properly manage the influx of data and, in some cases, dispatch emergency responders or push the appropriate alerts to physicians, caregivers, and family members.

The Healthcare AI Revolution

These are only a few of the ways in which artificial intelligence is altering our healthcare landscape in positive ways. To learn more about healthcare AI and other technological advancements in healthcare, explore these articles:

CareSync Articles: Advancements in Digital Health and Healthcare AI
Source: blog.caresync.com